\begin{tabbing} R{-}discrete($R$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=case $R$ of \+ \\[0ex]Rnone =$>$ $\otimes$ \\[0ex]Rplus(${\it left}$,${\it right}$)=$>$${\it rec}_{1}$,${\it rec}_{2}$.${\it rec}_{1}$ $\oplus$ ${\it rec}_{2}$ \\[0ex]Rinit(${\it loc}$,$T$,$x$,$v$)=$>$ $<$${\it loc}$, $x$$>$ : case $v$ of inl($a$) =$>$ tt $\mid$ inr($a$) =$>$ ff \\[0ex]Rframe(${\it loc}$,$T$,$x$,$L$)=$>$ $\otimes$ \\[0ex]Rsframe(${\it lnk}$,${\it tag}$,$L$)=$>$ $\otimes$ \\[0ex]Reffect(${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$)=$>$ $<$${\it loc}$, $x$$>$ : case $f$ of inl($a$) =$>$ tt $\mid$ inr($a$) =$>$ ff \\[0ex]Rsends(${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$)=$>$ $\otimes$ \\[0ex]Rpre(${\it loc}$,${\it ds}$,$a$,$T$,$P$)=$>$ $\otimes$ \\[0ex]Rkframe(${\it loc}$,$k$,$L$)=$>$ $\otimes$ \\[0ex]Rksframe(${\it loc}$,$k$,$L$)=$>$ $\otimes$ \\[0ex]Rrframe(${\it loc}$,$x$,$L$)=$>$ $\otimes$ \- \end{tabbing}